Affine connections, midpoint formation, and point reflection
نویسنده
چکیده
It is a striking fact that differential calculus exists not only in analysis (based on the real numbers R and limits therein), but also in algebraic geometry, where no limit processes are available. In algebraic geometry, one rather uses the idea of nilpotent elements in the “affine line” R; they act as infinitesimals. (Recall that an element x in a ring R is called nilpotent if xk = 0 for suitable non-negative integer k.) Synthetic differential geometry (SDG) is an axiomatic theory, based on such nilpotent infinitesimals. It can be proved, via topos theory, that the axiomatics covers both the differential-geometric notions of algebraic geometry and those of calculus. I shall illustrate this synthetic method, by presenting its application to three particular types of differential-geometric structure, namely that of affine connection, midpoint formation, and point reflection (geodesic symmetry). I shall not go much into the foundations of SDG, whose core is the so-called KL1 axiom scheme. This is a very strong kind of axiomatics; in fact, a salient feature of it is: it is inconsistent – if you allow yourself the luxury of reasoning with so-called classical logic, i.e. use the “law of excluded middle”, “proof by contradiction”, etc. Rather, in SDG, one uses a weaker kind of logic, often called “constructive” or “intuitionist”. Note the evident logical fact that there is a trade-off: with a weaker logic, stronger axiom systems become consistent. For the SDG axiomatics, it follows for instance that any function from the number line to itself is infinitely often differentiable (smooth); a very useful simplifying feature in differential geometry – but incompatible with the law of excluded
منابع مشابه
Affine Connections, and Midpoint Formation
It is a striking fact that differential calculus exists not only in analysis (based on the real numbers R), but also in algebraic geometry, where no limit processes are available. In algebraic geometry, one rather uses the idea of nilpotent elements in the “affine line” R; they act as infinitesimals. (Recall that an element x in a ring R is called nilpotent if xk = 0 for suitable non-negative i...
متن کاملRealization of locally extended affine Lie algebras of type $A_1$
Locally extended affine Lie algebras were introduced by Morita and Yoshii in [J. Algebra 301(1) (2006), 59-81] as a natural generalization of extended affine Lie algebras. After that, various generalizations of these Lie algebras have been investigated by others. It is known that a locally extended affine Lie algebra can be recovered from its centerless core, i.e., the ideal generated by weight...
متن کاملC*-Extreme Points and C*-Faces oF the Epigraph iF C*-Affine Maps in *-Rings
Abstract. In this paper, we define the notion of C*-affine maps in the unital *-rings and we investigate the C*-extreme points of the graph and epigraph of such maps. We show that for a C*-convex map f on a unital *-ring R satisfying the positive square root axiom with an additional condition, the graph of f is a C*-face of the epigraph of f. Moreover, we prove som...
متن کاملSymplectic Reflection Algebras and Affine Lie Algebras
These are the notes of my talk at the conference “Double affine Hecke algebras and algebraic geometry” (MIT, May 18, 2010). The goal of this talk is to discuss some results and conjectures suggesting that the representation theory of symplectic reflection algebras for wreath products categorifies certain structures in the representation theory for affine Lie algebras. These conjectures arose fr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Theor. Comput. Sci.
دوره 412 شماره
صفحات -
تاریخ انتشار 2011